# whisper-cpp-server **Repository Path**: ppnt/whisper-cpp-server ## Basic Information - **Project Name**: whisper-cpp-server - **Description**: whisper-cpp-server - **Primary Language**: HTML - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2023-11-29 - **Last Updated**: 2024-12-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # whisper-cpp service ## open sourde address [github](https://github.com/ppnt/whisper-cpp-server) [gitee](https://gitee.com/ppnt/whisper-cpp-server) ## Whisper-CPP-Server Introduction Whisper-CPP-Server is a high-performance speech recognition service written in C++, designed to provide developers and enterprises with a reliable and efficient speech-to-text inference engine. This project implements technology from ggml to perform inference on the open-source Whisper model. While ensuring speed and accuracy, it supports pure CPU-based inference operations, allowing for high-quality speech recognition services without the need for specialized hardware accelerators. Real-time speech recognition and display of recognition results in the browser backend ``` https://github.com/litongjava/whisper-cpp-server ``` frontend ``` https://github.com/litongjava/listen-know-web ``` Test video https://github.com/litongjava/whisper-cpp-server/assets/31761981/ba7268fa-312c-47b2-a538-804b96bb656f ## Main Features 1.Pure C++ Inference Engine Whisper-CPP-Server is entirely written in C++, leveraging the efficiency of C++ for rapid processing of vast amounts of voice data, even in environments that only have CPUs for computing power. 2.High Performance Thanks to the computational efficiency of C++, Whisper-CPP-Server can offer exceptionally high processing speeds, meeting real-time or near-real-time speech recognition demands. It is especially suited for scenarios that require processing large volumes of voice data. 3.Support for Multiple Languages The service supports speech recognition in multiple languages, broadening its applicability across various linguistic contexts. 4.Docker Container Support A Docker image is provided, enabling quick deployment of the service through simple command-line operations, significantly simplifying installation and configuration processes. Deploy using the following command: ``` docker run -dit --name whisper-server -p 8080:8080 litongjava/whisper-cpp-server:1.0.0-large-v3 ``` This means you can run Whisper-CPP-Server on any platform that supports Docker, including but not limited to Linux, Windows, and macOS. 4.Easy Integration for Clients Detailed client integration documentation is provided, helping developers quickly incorporate speech recognition functionality into their applications. [Client Code Documentation](https://github.com/litongjava/whisper-cpp-server/blob/main/doc/client_code.md) ## Applicable Scenarios Whisper-CPP-Server is suitable for a variety of applications that require fast and accurate speech recognition, including but not limited to: - Voice-driven interactive applications - Transcription of meeting records - Automatic subtitle generation - Automatic translation of multi-language content ## How to build it build with cmake and vcpkg ``` git clone https://github.com/litongjava/whisper-cpp-server.git git submodule init git submodule update cmake -B cmake-build-release cmake --build cmake-build-release --config Release -- -j 12 cp ./ggml-metal.metal cmake-build-release ``` run with simplest ``` ./cmake-build-release/simplest -m models/ggml-base.en.bin test.wav ``` run with http-server ``` ./cmake-build-release/whisper_http_server_base_httplib -m models/ggml-base.en.bin ``` run with websocket-server ``` ./cmake-build-release/whisper_server_base_on_uwebsockets -m models/ggml-base.en.bin ``` copy command ``` mkdir bin cp ./ggml-metal.metal bin cp ./cmake-build-release/simplest bin cp ./cmake-build-release/whisper_http_server_base_httplib bin cp ./cmake-build-release/whisper_server_base_on_uwebsockets bin ``` ## simplest ```shell cmake-build-debug/simplest -m models/ggml-base.en.bin samples/jfk.wav ``` ``` simplest [options] file0.wav file1.wav ... options: -h, --help [default] show this help message and exit -m FNAME, --model FNAME [models/ggml-base.en.bin] model path -di, --diarize [false ] stereo audio diarization ``` ## whisper_http_server_base_httplib Simple http service. WAV mp4 and m4a Files are passed to the inference model via http requests. ``` ./whisper_http_server_base_httplib -h usage: ./bin/whisper_http_server_base_httplib [options] options: -h, --help [default] show this help message and exit -t N, --threads N [4 ] number of threads to use during computation -p N, --processors N [1 ] number of processors to use during computation -ot N, --offset-t N [0 ] time offset in milliseconds -on N, --offset-n N [0 ] segment index offset -d N, --duration N [0 ] duration of audio to process in milliseconds -mc N, --max-context N [-1 ] maximum number of text context tokens to store -ml N, --max-len N [0 ] maximum segment length in characters -sow, --split-on-word [false ] split on word rather than on token -bo N, --best-of N [2 ] number of best candidates to keep -bs N, --beam-size N [-1 ] beam size for beam search -wt N, --word-thold N [0.01 ] word timestamp probability threshold -et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail -lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail -debug, --debug-mode [false ] enable debug mode (eg. dump log_mel) -tr, --translate [false ] translate from source language to english -di, --diarize [false ] stereo audio diarization -tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model) -nf, --no-fallback [false ] do not use temperature fallback while decoding -ps, --print-special [false ] print special tokens -pc, --print-colors [false ] print colors -pp, --print-progress [false ] print progress -nt, --no-timestamps [false ] do not print timestamps -l LANG, --language LANG [en ] spoken language ('auto' for auto-detect) -dl, --detect-language [false ] exit after automatically detecting language --prompt PROMPT [ ] initial prompt -m FNAME, --model FNAME [models/ggml-base.en.bin] model path -oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference --host HOST, [127.0.0.1] Hostname/ip-adress for the service --port PORT, [8080 ] Port number for the service ``` ## start whisper_http_server_base_httplib ``` ./cmake-build-debug/whisper_http_server_base_httplib -m models/ggml-base.en.bin ``` Test server see request doc in [doc](doc) ## request examples **/inference** ``` curl --location --request POST http://127.0.0.1:8080/inference \ --form file=@"./samples/jfk.wav" \ --form temperature="0.2" \ --form response-format="json" --form audio_format="wav" ``` **/load** ``` curl 127.0.0.1:8080/load \ -H "Content-Type: multipart/form-data" \ -F model="" ``` ## whisper_server_base_on_uwebsockets web socket server start server ``` ./cmake-build-debug/whisper_server_base_on_uwebsockets -m models/ggml-base.en.bin ``` Test server see python [client](client) ## Docker ### run whisper-cpp-server:1.0.0 [Dockerfile](./distribute/docker/pure/) ``` docker run -dit --name=whisper-server -p 8080:8080 -v "$(pwd)/models/ggml-base.en.bin":/models/ggml-base.en.bin litongjava/whisper-cpp-server:1.0.0 /app/whisper_http_server_base_httplib -m /models/ggml-base.en.bin ``` the port is 8080 ### test ``` curl --location --request POST 'http://127.0.0.1:8080/inference' \ --header 'Accept: */*' \ --header 'Content-Type: multipart/form-data; boundary=--------------------------671827497522367123871197' \ --form 'file=@"E:\\code\\cpp\\cpp-study\\cpp-study-clion\\audio\\jfk.wav"' \ --form 'temperature="0.2"' \ --form 'response-format="json"' \ --form 'audio_format="wav"' ``` ### run whisper-cpp-server:1.0.0-base-en [Dockerfile](./distribute/docker/base.en/) ``` docker run -dit --name whisper-server -p 8080:8080 litongjava/whisper-cpp-server:1.0.0-base-en ``` ### run whisper-cpp-server:1.0.0-large-v3 [Dockerfile](./distribute/docker/large-v3/) ``` docker run -dit --name whisper-server -p 8080:8080 litongjava/whisper-cpp-server:1.0.0-large-v3 ``` ## run whisper-cpp-server:1.0.0-tiny.en-q5_1 [Dockerfile](./distribute/docker/tiny.en-q5_1/) ``` docker run -dit --name whisper-server -p 8080:8080 litongjava/whisper-cpp-server:1.0.0-tiny.en-q5_1 ``` ### Client code [Client code](./doc/client_code.md)