# DI-hpc **Repository Path**: opendilab/DI-hpc ## Basic Information - **Project Name**: DI-hpc - **Description**: OpenDILab高性能强化学习算子库 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 3 - **Created**: 2021-10-08 - **Last Updated**: 2023-02-17 ## Categories & Tags **Categories**: machine-learning **Tags**: None ## README ## DI-HPC: Decision Intelligence - High Performance Computation **DI-HPC** is an acceleration operator component for general algorithm modules in reinforcement learning algorithms, such as GAE, n-step TD and LSTM, etc. The operators support forward and backward propagation, and can be used in training, data collection, and test modules. ## Requirements * CUDA 9.2 * PyTorch 1.5 (recommend) * python 3.6.9 * Linux Platform *Note: We recommend that DI-HPC and DI-Engine share the same environment, and it should be fine with PyTorch from 1.3.1 to 1.8.* ## Quick Start #### Install from whl The easiest way to get DI-HPC is to use pip, and you can get `.whl` from * [di_hpc_rll-0.0.2-cp36-cp36m-linux_x86_64.whl](http://opendilab.org/download/DI-hpc/di_hpc_rll-0.0.2-cp36-cp36m-linux_x86_64.whl) * [di_hpc_rll-0.0.2-cp37-cp37m-linux_x86_64.whl](http://opendilab.org/download/DI-hpc/di_hpc_rll-0.0.2-cp37-cp37m-linux_x86_64.whl) * [di_hpc_rll-0.0.2-cp38-cp38-linux_x86_64.whl](http://opendilab.org/download/DI-hpc/di_hpc_rll-0.0.2-cp38-cp38-linux_x86_64.whl) and then call ``` $ pip install ``` #### Install from source code Alternatively you can install latest DI-HPC from git master branch: ``` $ python3 setup.py install ``` #### Run on Linux You will get benchmark result by following commands: ``` $ python3 tests/test_gae.py ```