# mmdetection3d
**Repository Path**: monkeycc/mmdetection3d
## Basic Information
- **Project Name**: mmdetection3d
- **Description**: mmdetection3d 同步官方最新 https://github.com/open-mmlab/mmdetection3d
- **Primary Language**: Python
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 6
- **Forks**: 4
- **Created**: 2021-11-20
- **Last Updated**: 2025-01-21
## Categories & Tags
**Categories**: cv
**Tags**: None
## README
[](https://pypi.org/project/mmdet3d)
[](https://mmdetection3d.readthedocs.io/zh_CN/latest/)
[](https://github.com/open-mmlab/mmdetection3d/actions)
[](https://codecov.io/gh/open-mmlab/mmdetection3d)
[](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[](https://github.com/open-mmlab/mmdetection3d/issues)
[](https://github.com/open-mmlab/mmdetection3d/issues)
[📘使用文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/) |
[🛠️安装教程](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html) |
[👀模型库](https://mmdetection3d.readthedocs.io/zh_CN/latest/model_zoo.html) |
[🆕更新日志](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀进行中的项目](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔报告问题](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)
[English](README.md) | 简体中文
## 简介
MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 [OpenMMlab](https://openmmlab.com/) 项目的一部分。
主分支代码目前支持 PyTorch 1.8 以上的版本。

主要特性
- **支持多模态/单模态的检测器**
支持多模态/单模态检测器,包括 MVXNet,VoteNet,PointPillars 等。
- **支持户内/户外的数据集**
支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)。
- **与 2D 检测器的自然整合**
[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的 **300+ 个模型,40+ 的论文算法**,和相关模块都可以在此代码库中训练或使用。
- **性能高**
训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/zh_cn/notes/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `✗`。
| Methods | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
| :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
| VoteNet | 358 | ✗ | 77 | ✗ |
| PointPillars-car | 141 | ✗ | ✗ | 140 |
| PointPillars-3class | 107 | 44 | ✗ | ✗ |
| SECOND | 40 | 30 | ✗ | ✗ |
| Part-A2 | 17 | 14 | ✗ | ✗ |
和 [MMDetection](https://github.com/open-mmlab/mmdetection),[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。
## 最新进展
### 亮点
在1.4版本中,MMDetecion3D 重构了 Waymo 数据集, 加速了 Waymo 数据集的预处理、训练/测试启动、验证的速度。并且在 Waymo 上拓展了对 单目/BEV 等基于相机的三维目标检测模型的支持。在[这里](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)提供了对 Waymo 数据信息的详细解读。
此外,在1.4版本中,MMDetection3D 提供了 [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) 来帮助社区用户上手 Waymo 并用于快速迭代开发。
**v1.4.0** 版本已经在 2024.1.8 发布:
- 在 `projects` 中支持了 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的训练
- 在 `projects` 中支持了 [Nerf-Det](https://arxiv.org/abs/2307.14620)
- 重构了 Waymo 数据集
**v1.3.0** 版本已经在 2023.10.18 发布:
- 在 `projects` 中支持 [CENet](https://arxiv.org/abs/2207.12691)
- 使用新的 3D inferencers 增强演示代码效果
**v1.2.0** 版本已经在 2023.7.4 发布:
- 在 `mmdet3d/configs`中支持 [新Config样式](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta)
- 在 `projects` 中支持 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的推理
- 支持通过 `mim` 从 [OpenDataLab](https://opendatalab.com/) 下载数据集
**v1.1.1** 版本已经在 2023.5.30 发布:
- 在 `projects` 中支持 [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf)
- 在 `projects` 中支持 BEVFusion 的训练
- 支持基于激光雷达的 3D 语义分割基准
## 安装
请参考[快速入门文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html)进行安装。
## 教程
用户指南
- [训练 & 测试](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#train-test)
- [学习配置文件](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/config.html)
- [坐标系](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/coord_sys_tutorial.html)
- [数据预处理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/dataset_prepare.html)
- [自定义数据预处理流程](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/data_pipeline.html)
- [在标注数据集上测试和训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/train_test.html)
- [推理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/inference.html)
- [在自定义数据集上进行训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/new_data_model.html)
- [实用工具](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#useful-tools)
进阶教程
- [数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#datasets)
- [KITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/kitti.html)
- [NuScenes 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.html)
- [Lyft 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/lyft.html)
- [Waymo 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/waymo.html)
- [SUN RGB-D 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/sunrgbd.html)
- [ScanNet 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/scannet.html)
- [S3DIS 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/s3dis.html)
- [SemanticKITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/semantickitti.html)
- [支持的任务](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#supported-tasks)
- [基于激光雷达的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_det3d.html)
- [基于视觉的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/vision_det3d.html)
- [基于激光雷达的 3D 语义分割](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [自定义项目](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#customization)
- [自定义数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_dataset.html)
- [自定义模型](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_models.html)
- [自定义运行时配置](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_runtime.html)
## 基准测试和模型库
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
模块组件
算法模型
激光雷达 3D 目标检测
|
相机 3D 目标检测
|
多模态 3D 目标检测
|
3D 语义分割
|
室外
室内
|
室外
Indoor
|
室外
室内
|
室外
室内
|
| | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
| SECOND | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| PointPillars | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
| FreeAnchor | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
| VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| H3DNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| 3DSSD | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| Part-A2 | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| MVXNet | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| CenterPoint | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| SSN | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
| ImVoteNet | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| FCOS3D | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| PointNet++ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| Group-Free-3D | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| ImVoxelNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| PAConv | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| DGCNN | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
| SMOKE | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| PGD | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| MonoFlex | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| SA-SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| FCAF3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
| PV-RCNN | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| Cylinder3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
| MinkUNet | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
| SPVCNN | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
| BEVFusion | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| CenterFormer | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| TR3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
| DETR3D | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| PETR | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| TPVFormer | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。
## 常见问题
请参考 [FAQ](docs/zh_cn/notes/faq.md) 了解其他用户的常见问题。
## 贡献指南
我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](docs/en/notes/contribution_guides.md)来了解参与项目贡献的相关指引。
## 致谢
MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型。
## 引用
如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D:
```latex
@misc{mmdet3d2020,
title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
author={MMDetection3D Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
year={2020}
}
```
## 开源许可证
该项目采用 [Apache 2.0 开源许可证](LICENSE)。
## OpenMMLab 的其他项目
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),扫描下方微信二维码添加喵喵好友,进入 MMDetection3D 微信交流社群。【加好友申请格式:研究方向+地区+学校/公司+姓名】
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬