# labelme **Repository Path**: monkeycc/labelme ## Basic Information - **Project Name**: labelme - **Description**: 同步更新官方最新版 Labelme https://github.com/wkentaro/labelme - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: https://github.com/wkentaro/labelme - **GVP Project**: No ## Statistics - **Stars**: 21 - **Forks**: 16 - **Created**: 2020-10-27 - **Last Updated**: 2025-06-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README


labelme

Image Polygonal Annotation with Python

Installation | Usage | Examples

## Description Labelme is a graphical image annotation tool inspired by . It is written in Python and uses Qt for its graphical interface. VOC dataset example of instance segmentation. Other examples (semantic segmentation, bbox detection, and classification). Various primitives (polygon, rectangle, circle, line, and point). ## Features - [x] Image annotation for polygon, rectangle, circle, line and point. ([tutorial](examples/tutorial)) - [x] Image flag annotation for classification and cleaning. ([#166](https://github.com/wkentaro/labelme/pull/166)) - [x] Video annotation. ([video annotation](examples/video_annotation)) - [x] GUI customization (predefined labels / flags, auto-saving, label validation, etc). ([#144](https://github.com/wkentaro/labelme/pull/144)) - [x] Exporting VOC-format dataset for semantic/instance segmentation. ([semantic segmentation](examples/semantic_segmentation), [instance segmentation](examples/instance_segmentation)) - [x] Exporting COCO-format dataset for instance segmentation. ([instance segmentation](examples/instance_segmentation)) ## Installation There are 3 options to install labelme: ### Option 1: Using pip For more detail, check ["Install Labelme using Pip"](https://www.labelme.io/docs/install-labelme-pip). ```bash pip install labelme # To install the latest version from GitHub: # pip install git+https://github.com/wkentaro/labelme.git ``` ### Option 2: Using standalone executable (Easiest) If you're willing to invest in the convenience of simple installation without any dependencies (Python, Qt), you can download the standalone executable from ["Install Labelme as App"](https://www.labelme.io/docs/install-labelme-app). It's a one-time payment for lifetime access, and it helps us to maintain this project. ### Option 3: Using a package manager in each Linux distribution In some Linux distributions, you can install labelme via their package managers (e.g., apt, pacman). The following systems are currently available: [![Packaging status](https://repology.org/badge/vertical-allrepos/labelme.svg)](https://repology.org/project/labelme/versions) ## Usage Run `labelme --help` for detail. The annotations are saved as a [JSON](http://www.json.org/) file. ```bash labelme # just open gui # tutorial (single image example) cd examples/tutorial labelme apc2016_obj3.jpg # specify image file labelme apc2016_obj3.jpg -O apc2016_obj3.json # close window after the save labelme apc2016_obj3.jpg --nodata # not include image data but relative image path in JSON file labelme apc2016_obj3.jpg \ --labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball # specify label list # semantic segmentation example cd examples/semantic_segmentation labelme data_annotated/ # Open directory to annotate all images in it labelme data_annotated/ --labels labels.txt # specify label list with a file ``` ### Command Line Arguments - `--output` specifies the location that annotations will be written to. If the location ends with .json, a single annotation will be written to this file. Only one image can be annotated if a location is specified with .json. If the location does not end with .json, the program will assume it is a directory. Annotations will be stored in this directory with a name that corresponds to the image that the annotation was made on. - The first time you run labelme, it will create a config file in `~/.labelmerc`. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the `--config` flag. - Without the `--nosortlabels` flag, the program will list labels in alphabetical order. When the program is run with this flag, it will display labels in the order that they are provided. - Flags are assigned to an entire image. [Example](examples/classification) - Labels are assigned to a single polygon. [Example](examples/bbox_detection) ### FAQ - **How to convert JSON file to numpy array?** See [examples/tutorial](examples/tutorial#convert-to-dataset). - **How to load label PNG file?** See [examples/tutorial](examples/tutorial#how-to-load-label-png-file). - **How to get annotations for semantic segmentation?** See [examples/semantic_segmentation](examples/semantic_segmentation). - **How to get annotations for instance segmentation?** See [examples/instance_segmentation](examples/instance_segmentation). ## Examples * [Image Classification](examples/classification) * [Bounding Box Detection](examples/bbox_detection) * [Semantic Segmentation](examples/semantic_segmentation) * [Instance Segmentation](examples/instance_segmentation) * [Video Annotation](examples/video_annotation) ## How to build standalone executable ```bash LABELME_PATH=./labelme OSAM_PATH=$(python -c 'import os, osam; print(os.path.dirname(osam.__file__))') pyinstaller labelme/labelme/__main__.py \ --name=Labelme \ --windowed \ --noconfirm \ --specpath=build \ --add-data=$(OSAM_PATH)/_models/yoloworld/clip/bpe_simple_vocab_16e6.txt.gz:osam/_models/yoloworld/clip \ --add-data=$(LABELME_PATH)/config/default_config.yaml:labelme/config \ --add-data=$(LABELME_PATH)/icons/*:labelme/icons \ --add-data=$(LABELME_PATH)/translate/*:translate \ --icon=$(LABELME_PATH)/icons/icon.png \ --onedir ``` ## Acknowledgement This repo is the fork of [mpitid/pylabelme](https://github.com/mpitid/pylabelme).