# DeepLearning-MachineLearning-Note **Repository Path**: edata-code/DeepLearning-MachineLearning-Note ## Basic Information - **Project Name**: DeepLearning-MachineLearning-Note - **Description**: Deep Learning and machine learning note and code - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: https://www.cnblogs.com/endlesscoding/ - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-01-06 - **Last Updated**: 2021-09-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## 深度/机器学习笔记 深度学习和机器学习的一些笔记 ### Focal Loss - [ ] 添加更为详细的实现说明 FL对处理样本不平衡问题效果不错,这里对它做一个详细的解释,并且用pytorch实现,详细的解释请查看我的[博客](https://www.cnblogs.com/endlesscoding/p/12155588.html)。 - [x] Pytorch Focal Loss - [x] Light Focal Loss - [ ] Catboost Focal Loss ### GHM Loss GHM Loss 出自[Gradient Harmonized Single-Stage Detector](https://www.aaai.org/ojs/index.php/AAAI/article/view/4877/4750),可以看作是Focal Loss的改进版,比Focal Loss的效果更好。 论文中实现了分类loss和回归loss。 #### 分类loss:GHM-C $$ \begin{aligned} L_{G H M-C} &=\frac{1}{N} \sum_{i=1}^{N}{\beta_{i} L_{C E}\left(p_{i}, p_{i}^{*}\right)} \\ &=\sum_{i=1}^{N}{\frac{L_{C E}\left(p_{i}, p_{i}^{*}\right)}{G D\left(g_{i}\right)}} \end{aligned} $$ #### 回归loss: GHM-R 提出一个`Smooth L1 Loss`替代版: $$ A S L_{1}(d)=\sqrt{d^{2}+\mu^{2}}-\mu $$ $$ \begin{aligned} L_{G H M-R} &=\frac{1}{N} \sum_{i=1}^{N} \beta_{i} A S L_{1}\left(d_{i}\right) \\ &=\sum_{i=1}^{N} \frac{A S L_{1}\left(d_{i}\right)}{G D\left(g r_{i}\right)} \end{aligned} $$ > 更加详细的解释请看论文。