# puppersim **Repository Path**: codeinLinXu/puppersim ## Basic Information - **Project Name**: puppersim - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-30 - **Last Updated**: 2021-10-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # puppersim Simulation for DJI Pupper v2 robot ## Usage: python setup.py develop Then run puppersim/pupper_server.py In a separate terminal, run the StanfordQuadruped run_djipupper_sim from this [fork](https://github.com/erwincoumans/StanfordQuadruped). Keyboard controls: * wasd: left joystick * arrow keys: right joystick * q: L1 * e: R1 * ijkl: d-pad * x: X * square: u * triangle: t * circle: c ## Training a Gym environment You can train the pupper using pybullet [envs_v2](https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/minitaur/envs_v2) and this [ARS fork](https://github.com/erwincoumans/ars). ``` pip install pybullet arspb ray puppersim ray start --head python puppersim/pupper_ars_train.py --policy_type=linear python puppersim/pupper_ars_run_policy.py --expert_policy_file=data/lin_policy_plus_best_xxx.npz --json_file=data/params.json ``` See a video of a trained policy: https://www.youtube.com/watch?v=JzNsax4M8eg