diff --git a/PyTorch/dev/cv/image_segmentation/DeepLabV3+_ID0458_for_PyTorch/main.py b/PyTorch/dev/cv/image_segmentation/DeepLabV3+_ID0458_for_PyTorch/main.py index 2ce87b2c202b5c2ae96b2279b092ddc03ba95a1b..a73edf64048cf1ab5f3db50e2bdc2b43080894d0 100644 --- a/PyTorch/dev/cv/image_segmentation/DeepLabV3+_ID0458_for_PyTorch/main.py +++ b/PyTorch/dev/cv/image_segmentation/DeepLabV3+_ID0458_for_PyTorch/main.py @@ -292,9 +292,9 @@ def main(): train_dst, val_dst = get_dataset(opts) train_loader = data.DataLoader( - train_dst, batch_size=opts.batch_size, shuffle=True, num_workers=2) + train_dst, batch_size=opts.batch_size, shuffle=True, pin_memory=True,num_workers=64) val_loader = data.DataLoader( - val_dst, batch_size=opts.val_batch_size, shuffle=True, num_workers=2) + val_dst, batch_size=opts.val_batch_size, shuffle=True, pin_memory=True,num_workers=2) print("Dataset: %s, Train set: %d, Val set: %d" % (opts.dataset, len(train_dst), len(val_dst))) @@ -400,8 +400,8 @@ def main(): for (images, labels) in train_loader: cur_itrs += 1 - images = images.to(f'npu:{NPU_CALCULATE_DEVICE}', dtype=torch.float32) - labels = labels.to(f'npu:{NPU_CALCULATE_DEVICE}', dtype=torch.long) + images = images.to(f'npu:{NPU_CALCULATE_DEVICE}', dtype=torch.float32, non_blocking=True) + labels = labels.to(f'npu:{NPU_CALCULATE_DEVICE}', dtype=torch.long, non_blocking=True) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels)