diff --git a/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_16p.sh b/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_16p.sh index 535b97995ec8b66ee0d70b6bbf38a0ec1c6c30aa..b9039d7334ab2c0896036ef3c412245881470c3e 100644 --- a/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_16p.sh +++ b/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_16p.sh @@ -74,8 +74,6 @@ if [[ $data_path == "" ]];then fi -sed -i "s|checkpoint_utils.save_checkpoint(|#checkpoint_utils.save_checkpoint(|g" $cur_path/../fairseq_cli/train.py - export HCCL_IF_IP=$fix_node_ip export MASTER_ADDR=$one_node_ip export MASTER_PORT=29688 @@ -195,5 +193,3 @@ echo "ActualFPS = ${ActualWPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log - -sed -i "s|#checkpoint_utils.save_checkpoint(|checkpoint_utils.save_checkpoint(|g" $cur_path/../fairseq_cli/train.py diff --git a/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_1p.sh b/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_1p.sh index d4a0781b2ab7e849aed81865f255273983d5b5c5..c49ed97ca1f01bbdc9f21525ec9d44a9550926aa 100644 --- a/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_1p.sh +++ b/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_1p.sh @@ -89,7 +89,6 @@ if [ x"${etp_flag}" != x"true" ];then source ${test_path_dir}/env_npu.sh fi -sed -i "s|checkpoint_utils.save_checkpoint(|#checkpoint_utils.save_checkpoint(|g" $cur_path/fairseq_cli/train.py #创建DeviceID输出目录,不需要修改 if [ -d $cur_path/test/output ];then rm -rf $cur_path/test/output/* @@ -123,7 +122,6 @@ wait end=$(date +%s) e2e_time=$(( $end - $start )) -sed -i "s|#checkpoint_utils.save_checkpoint(|checkpoint_utils.save_checkpoint(|g" $cur_path/fairseq_cli/train.py #结果打印,不需要修改 echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 diff --git a/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_8p.sh b/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_8p.sh index 59bd2fdf09485a26757a3e6e5c7e09a92bc0d57d..efb84210516d363cb0a768e95a2cd62da6237952 100644 --- a/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_8p.sh +++ b/PyTorch/built-in/nlp/mBART_ID2372_for_PyTorch/test/train_performance_8p.sh @@ -71,7 +71,6 @@ if [[ $data_path == "" ]];then exit 1 fi -sed -i "s|checkpoint_utils.save_checkpoint(|#checkpoint_utils.save_checkpoint(|g" $cur_path/fairseq_cli/train.py ##################创建日志输出目录,根据模型审视################## # 模型采用非循环方式启动多卡训练,创建日志输出目录如下;采用循环方式启动多卡训练的模型,在循环中创建日志输出目录,可参考CRNN模型 # 非循环方式下8卡训练日志输出路径中的ASCEND_DEVICE_ID默认为0,只是人为指定文件夹名称, 不涉及训练业务 @@ -195,5 +194,3 @@ echo "ActualFPS = ${ActualWPS}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${C echo "TrainingTime = ${TrainingTime}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "E2ETrainingTime = ${e2e_time}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log - -sed -i "s|#checkpoint_utils.save_checkpoint(|checkpoint_utils.save_checkpoint(|g" $cur_path/fairseq_cli/train.py \ No newline at end of file