# srgan **Repository Path**: TensorLayer/srgan ## Basic Information - **Project Name**: srgan - **Description**: SRGAN: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 开源中国官方镜像 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: http://github.com/tensorlayer - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 1 - **Created**: 2019-08-03 - **Last Updated**: 2025-04-28 ## Categories & Tags **Categories**: machine-learning **Tags**: None ## README ## Super Resolution Examples We run this script under [TensorFlow](https://www.tensorflow.org) 2.0 and the [TensorLayer](https://github.com/tensorlayer/tensorlayer) 2.0+. For TensorLayer 1.4 version, please check [release](https://github.com/tensorlayer/srgan/releases). 🚀🚀🚀🚀🚀🚀 **THIS PROJECT WILL BE CLOSED AND MOVED TO [THIS FOLDER](https://github.com/tensorlayer/tensorlayer/tree/master/examples) IN A MONTH.** 🚀🚀🚀🚀🚀🚀 **THIS PROJECT WILL BE CLOSED AND MOVED TO [THIS FOLDER](https://github.com/tensorlayer/tensorlayer/tree/master/examples) IN A MONTH.** 🚀🚀🚀🚀🚀🚀 **THIS PROJECT WILL BE CLOSED AND MOVED TO [THIS FOLDER](https://github.com/tensorlayer/tensorlayer/tree/master/examples) IN A MONTH.** ### SRGAN Architecture TensorFlow Implementation of ["Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"](https://arxiv.org/abs/1609.04802)
### Results
### Prepare Data and Pre-trained VGG - 1. You need to download the pretrained VGG19 model in [here](https://github.com/tensorlayer/pretrained-models/tree/master/models) as [tutorial_models_vgg19.py](https://github.com/tensorlayer/tensorlayer/blob/master/examples/pretrained_cnn/tutorial_models_vgg19.py) show. - 2. You need to have the high resolution images for training. - In this experiment, I used images from [DIV2K - bicubic downscaling x4 competition](http://www.vision.ee.ethz.ch/ntire17/), so the hyper-paremeters in `config.py` (like number of epochs) are seleted basic on that dataset, if you change a larger dataset you can reduce the number of epochs. - If you dont want to use DIV2K dataset, you can also use [Yahoo MirFlickr25k](http://press.liacs.nl/mirflickr/mirdownload.html), just simply download it using `train_hr_imgs = tl.files.load_flickr25k_dataset(tag=None)` in `main.py`. - If you want to use your own images, you can set the path to your image folder via `config.TRAIN.hr_img_path` in `config.py`. ### Run - Set your image folder in `config.py`, if you download [DIV2K - bicubic downscaling x4 competition](http://www.vision.ee.ethz.ch/ntire17/) dataset, you don't need to change it. - Other links for DIV2K, in case you can't find it : [test\_LR\_bicubic_X4](https://data.vision.ee.ethz.ch/cvl/DIV2K/validation_release/DIV2K_test_LR_bicubic_X4.zip), [train_HR](https://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip), [train\_LR\_bicubic_X4](https://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_LR_bicubic_X4.zip), [valid_HR](https://data.vision.ee.ethz.ch/cvl/DIV2K/validation_release/DIV2K_valid_HR.zip), [valid\_LR\_bicubic_X4](https://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_LR_bicubic_X4.zip). ```python config.TRAIN.img_path = "your_image_folder/" ``` - Start training. ```bash python train.py ``` - Start evaluation. ```bash python train.py --mode=evaluate ``` ### Reference * [1] [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network](https://arxiv.org/abs/1609.04802) * [2] [Is the deconvolution layer the same as a convolutional layer ?](https://arxiv.org/abs/1609.07009) ### Author - [zsdonghao](https://github.com/zsdonghao) ### Citation If you find this project useful, we would be grateful if you cite the TensorLayer paper: ``` @article{tensorlayer2017, author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike}, journal = {ACM Multimedia}, title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}}, url = {http://tensorlayer.org}, year = {2017} } ``` ### Other Projects - [Style Transfer](https://github.com/tensorlayer/adaptive-style-transfer) - [Pose Estimation](https://github.com/tensorlayer/openpose) ### Discussion - [TensorLayer Slack](https://join.slack.com/t/tensorlayer/shared_invite/enQtMjUyMjczMzU2Njg4LWI0MWU0MDFkOWY2YjQ4YjVhMzI5M2VlZmE4YTNhNGY1NjZhMzUwMmQ2MTc0YWRjMjQzMjdjMTg2MWQ2ZWJhYzc) - [TensorLayer WeChat](https://github.com/tensorlayer/tensorlayer-chinese/blob/master/docs/wechat_group.md) ### License - For academic and non-commercial use only. - For commercial use, please contact tensorlayer@gmail.com.